Technical Paper published in Optics Letters – Vol. 36, No. 22 – Nov. 15, 2011
by Shoude Chang, Erroll Murdock, Youxin Mao, Costel Flueraru and John Disano, Inst. for Microstructural Sciences, Nat’l Research Council Canada

Abstract

A side-scanning fiber probe is a critical component for optical coherence tomography in medical imaging and diagnosis. We propose and fabricate an on-axis rotating probe that performs in situ, circumferential scanning that is shadow-free (not susceptible to shadow effects caused by the motor’s wires). A miniature motor that incorporates a bored-out shaft for the optical fiber is located at the distal end of the probe, which results in a more stable and uniform circumferential scan, free from wire-shadow interference effects. More importantly, this design, novel to our knowledge, compared to other probes avoids the insertion losses introduced by optical coupling components and the multitude of optical interfaces, which is very important for sensing weak signals backscattered from structures deep in the tissue.

Visit OSA to download the paper (free to Optics Letters subscribers, otherwise $15 OSA members / $35 non-members).